The graph of $y=x^{\wedge} x$

I have been working on this graph and I found the graph to be ABSOLUTELY fascinating.

For $\mathrm{x}>0$ there is no problem.
It looks like this:

$$
\begin{aligned}
& \qquad \text { If } y=x^{x} \\
& \text { then } \ln (y)=\ln \left(x^{x}\right) \\
& \text { so that } \ln (y)=x \ln (x) \\
& \text { therefore differentiating: } \\
& \text { we get } \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{x}+1 \times \ln (x) \\
&=1+\ln (x)
\end{aligned}
$$

If the gradient is zero then $\ln (x)=-1$ so $x=e^{-1} \approx 0.367879$ and $y=0.6922$
This is a minimum point.
Many people believe that the minimum value of x^{x} is $0.6922 \ldots$
but there is a left hand side to the graph when $\mathrm{x}<0$ where it gets very exciting!

If $x<0$ we CAN find y values!

For instance if:

$$
\begin{aligned}
& x=-1 \text { we get }(-1)^{\wedge}(-1)=-1 \\
& x=-2 \text { we get }(-2)^{\wedge}(-2)=+1 / 4 \\
& x=-3 \text { we get }(-3)^{\wedge}(-3)=-0.037 \\
& x=-4 \text { we get }(-4)^{\wedge}(-4)=+0.0039
\end{aligned}
$$

> These are all REAL numbers and they are less than 0.6922 !

If we plot these extra points we get something like this...

...and these are not just a few isolated points! I will explain below...
If $x=-0.5$ then $y=(-0.5)^{\wedge}(-0.5)=-1.414 i$
If $x=-1.5$ then $y=(-1.5)^{\wedge}(-1.5)=+0.544 i$
If $x=-1.6$ then $y=(-1.6)^{\wedge}(-1.6)=0.15+\mathbf{0 . 4 5 i}$
We can plot these points if we change from the normal x, y axes to a REAL x axis sticking through a complex y plane as below:
x, y axes

Real x axis and complex y PLANE

Now if we plot many points we get this amazing shape!

I finally found the equation of the actual spiral and produced this wonderful graph...

